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log [AMINE] 

Figure 2. Plots for log ^01* vs log [amine]: (A) PCPD + JV-methylaniline 
(monitored at X = 310 nm); (A) PCPD + iV-methylaniline (X = 400 nm); 
(D) PCPD + diethylamine (X = 310 nm); (•) PCPD + diethylamine (X 
= 340 nm); (O) PMPD + diethylamine (X = 310 nm); ( • ) PMPD + 
diethylamine (X = 340 nm); and (*) PCPD + triethylamine (X = 310 
nm). 

168 (n«) 

Figure 3. Analysis of the transient absorption at 340 nm for a solution 
of 3-chloro-3-(p-chlorophenyl)diazirine (0.015 M) and DEA (0.048 M) 
in isooctane (excitation 355 nm, 200 ps; temperature 27 0C): (A) decay 
of the/vchlorophenylchlorocarbene: 10 ns lifetime (B) growth and decay 
of the ylide with 10 and 32 ns growth and decay times; and (C) exper­
imental data fitted with the sum of the theoretical curves A and B. 

rapid disappearance of the ylide with k = 3.1 X 107 s"1 (1 /32 ns) 
is attributed to the 1,2 proton transfer in the ammonium ylide. 
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At high [DEA], the lifetime of the ylide measured at 340 nm 
(• in Figure 2) decreases as [DEA] increases. This indicates that 
the proton transfer in the ylide is base catalzyed. Similarly, LFP 
of 3-chloro-3-(p-methylphenyl)diazirine (PMPD) in isooctane 
yielded p-CH3-PhCCl (2). The quenching of carbene 2, monitored 
at 310 nm, at 27 0C yielded very similar results with £q(2, DEA) 
= 1.08 X 109 M"1 s"1 for [DEA] = 1-40 mM and a minimum 
[DEA] around 40 mM to get a detectable ylide absorption, and 

a similar lifetime for the ylide i.e. similar rate constant for the 
1,2 proton transfer. The spectrum of this ylide is similar to the 
one given in Figure 1 except that the Xma]I is blue shifted by 10 
nm. 

The difference in the reactivities of carbenes 1 and 2 is clearly 
due to the electronic effect of the para substituent. Since, in the 
ylide, the carbene is the electron-accepting species, any substituent 
which increases the electron density on the carbene center will 
decrease the reactivity. 

Behavior of carbene 1 with tertiary (triethylamine, TEA) and 
aromatic (A -̂methylaniline, MAN) amines was examined. The 
quenching of carbene 1 by these amines at low concentrations gave 
the following rate constants: /k,(l, TEA) = 7.2 X 108 M"1 s"1 and 
/fcq(l,MAN) = 8.0 X 109 M"1 s"1. 

In the case of TEA, the ylide lifetime is an order of magnitude 
longer than for DEA, but the lack of a clear absorption spectrum 
makes an exact determination difficult. Further experiment will 
examine the reaction of arylchlorocarbenes with other amines. 
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All of the reported syntheses that have employed annulations 
of Fischer carbene complexes1 produce benzene rings in a process 
that incorporates the carbene carbon and 1 equiv of the alkyne.2,3 

Analogous annulations that incorporate the carbene ligand and 
2 equiv of the alkyne have not been employed in synthesis.4"7 We 
report here the first examples of double intramolecular two-alkyne 
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gamon Press: New York, 1991; Vol. 5. 

(2) For a list of citations to syntheses, see ref Id and footnote 6 in the 
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Miller, R. A.; Murray, C. K.; Yang, D. C. J. Am. Chem. Soc. 1990,112, 3642. 
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Table I. Double Intramolecular Two-Alkyne Annulations" 
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41 
16 
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"All reactions were carried out at 0.005 M in carbene complex and 
required 16-24 h. Reactions of 6 were at 70 0C, and those of 7 were 
at 110 °C. 'Reaction mixtures were sealed in a reaction flask14 at 25 
0C under 1 atm of CO and heated to 110 0C. 'Isolated as ketone 1Od 
resulting from hydrolysis of methyl enol ether 10c. 

annulations and a new approach to the tetracyclic carbon nucleus 
of the steroid skeleton via the tandem Diels-Alder/double in­
tramolecular two-alkyne annulation of Fischer carbene complexes, 
where all four rings are constructed in a single pot according to 
the general approach indicated in Scheme I.8 

There have been no reports of double intramolecular two-alkyne 
annulations, and therefore, an analysis of the scope of this reaction 
was undertaken (Table I). The efficiency of the reaction for the 
production of phenol products is highly dependent on the sizes 
of the rings in the tricyclic product. The chromium complex 6a9 

(8) This work was presented in preliminary form at the 201st National 
Meeting of the American Chemical Society, Atlanta, GA, April 14-19, 1991; 
Abstract 196. 
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"Reaction conditions in Table I. 'See footnote b in Table I 
yield; 18a:18b = 1.5. 

: Total 

gives a total of 72% yield of the bis-fused cyclopentanoid products 
as a mixture of the phenol 8a and the nonreduced cyclo-
hexadienone 9a.5a,6d,7b In contrast, the lower homologous chro­
mium complex 6b gives none of the expected benzocyclobutene 
8b but rather the unprecedented lactone 10b, which has incor­
porated both of the alkyne functions as well as two of the carbon 
monoxide ligands of the carbene complex.7b'c 

The thermolysis of the chromium complex 6c is the model 
system for the proposed synthetic approach to the steroid tetra­
cyclic carbon skeleton that is outlined in Scheme I, and thus it 
was disappointing that this reaction gave only a 24% yield of the 
tricyclic phenol 8c. However, it was anticipated that a complex 
of the type 2 may provide for more efficient two-alkyne annulations 
due to the presence of the six-membered ring, which should serve 
to restrict the conformations of the diyne side chain with respect 
to the carbene-complexed metal unit. The chromium complex 
11 was the target for this test and was prepared from complex 
3a in a Diels-Alder reaction (0.1 M in benzene, 25 0C, 12 h) with 
Danishefsky's diene (1.5 equiv) in 87% yield (82% for 12).2-11 A 

(9) The chromium complex 6c was prepared in 51 % yield by alkylation of 
(methylmethoxymethylene)pentacarbonylchromium(O) with 1 -undeca-4,9-
diynyl triflate according to procedures for related complexes." Complexes 
6a and 6b were prepared in a related manner in 72 and 38% yields, respec­
tively. The tungsten complex 7a was prepared in 57% yield by the standard 
Fischer procedure1 from tungsten hexacarbonyl and l-lithioundeca-4,9-diyne, 
which in turn was generated from the corresponding iodide.10 The complexes 
7b and 7c were prepared in a similar manner in 44 and 28% yield, respectively. 

(10) (a) Bailey, VV. F.; Punzalan, E. R. J. Org. Chem. 1990, 55, 5404. (b) 
Negishi, I.; Swanson, D. R.; Rousset, C. J. J. Org. Chem. 1990, 55, 5406. 
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rapidly decomposing intermediate complex could be observed by 
TLC, which was presumably the nonaromatized Diels-Alder 
adduct; however, these complexes did not survive when 11 and 
12 were purified on silica gel. 

TBSO Me1 

(OC)5M1 
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3 - 0 . 1 M 
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1.5 equiv 

• — • » -

b e n z e n e , 2 5 ° C, 

12-16 h 
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11 M = Cr 8 7 % 
12 M = W 8 2 % 

Although the thermolysis of 11 at 75 0C did produce a better 
mass balance than did 6c, the reaction still gives an equal dis­
tribution between phenol and lactone products, as indicated in 
Scheme II. According to the mechanism shown in Scheme II, 
the branch point between the lactone and phenol products is the 
vinyl carbene intermediate 13, which undergoes either insertion 
of the second equivalent of alkyne to give 14 or CO insertion to 
give the ketene complex 15. If this is correct, then a solution to 
the poor chemoselectivity would be to employ tungsten ca/bene 
complexes since it has been observed that tungsten carbene com­
plexes give CO-inserted products less readily than chromium.12 

In fact, the thermolysis of the tungsten complex 12 at 110 0C gives 
exclusively the two-alkyne phenol 18 in 78% yield in acetonitrile 
solution under CO atmosphere. Likewise, lactone products were 
never observed from the thermolysis of the tungsten complexes 
7a-c indicated in Table I. 

Finally, it was found that all four rings of the tetracyclic phenol 
18 could be constructed in one pot in 62% yield from the triyne 
carbene complex 3b.13 This carbene complex could be readily 
obtained in two steps from the triflate 5 and the commercially 
available 1,5-hexadiyne as indicated in Scheme I.15 This strategy 
for the synthesis of steroids is in the class O -*• ABCD and has 
been reported previously in a cobalt-mediated process.17 The 
results described herein reveal that the two-alkyne annulations 
and Diels-Alder reactions of Fischer carbene complexes applied 
in tandem provide for a very straightforward approach to the 
steroid ring system. The strategy would be amenable to nonar-
omatic A-ring systems upon generation of 2 from the Diels-Alder 
reactions of a^-vinylic carbene complexes. 

TBSO 

(OC)5W 
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(1.5 equiv) 

C H 3 C N ^ S 0 C , 16 h 
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2) 110°C,23h 
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The Diels-Alder reaction is highly valued because it can be 
employed to append four carbons stereospecifically to an alkene 
to form a new six-membered ring. Similar stereospecific annu­
lation strategies have been developed for fusing one, two, and three 
carbons to alkenes to synthesize three-, four-, and five-membered 
rings. So too, it would be useful to append five, six, or more 
carbons to appropriate alkenes to form seven-, eight-, or high-
er-membered rings in stereospecific fashion. We have discovered 
a new synthetic method which accomplishes this goal. 

The procedure is straightforward. An w-bromoalkyl ketene is 
generated from an appropriate oi-bromo acid in the presence of 
an alkene to form a cyclobutanone1,2 (Scheme I). Free radical 
reaction3 of the adduct yields the ring-expanded4 annulation 
product (Scheme I). 

The reaction sequence leading to the ring fusion is stereospecific; 
the cis stereochemistry is enforced by the requirements of the 
cyclobutanone ring and is then translated to the ring-expansion 
product. Further examples are shown in Table I. 

In the ketene cycloaddition, a mixture of exo and endo products 
is observed. The cycloadducts with exo side chains undergo smooth 
ring expansion. Cyclobutanones with endo side chains are prone 
to undergo direct reduction as a consequence of steric hindrance 
to ring-closure. 

In a typical example (Table I, entry 1) the exo adduct 1 of 
cyclopentadiene and bromopropyl ketene was treated under slow 
addition conditions with tri-H-butyltin hydride and AIBN in re-
fluxing benzene. The product of ring annulation 2 was obtained 
in 74% yield together with minor amounts of the alternative 
ring-opening product 3 and the product 4 of cyclization to the 
double bond. 

In designing this sequence, we anticipated that the initial 
primary radical in 5 would attack the four-membered ketone to 
give the alkoxy radical4,5 (Scheme II). The latter would then 
open in either of two ways (to 7 or 8) to yield the ring-expanded 
annulation product 2 accompanied by the minor product of ring 
attachment 3. The driving force is provided by the relief of strain 
in the four-membered ring. In every instance, ring expansion is 
the major path in the sequence. 

Entry 2 in Table I shows that annulation of eight-membered 
rings is also possible following this strategy. Annulation to cy-
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hedron 1991, 47, 4847 and references therein. 
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